Solved integral of the form ∫ln(αx+√(β+α^2x^2))dx
📂 Mathematics
👤 plati-goods
Product Description
Solving an indefinite integral of the form ∫ln(αx+√(β+α^2x^2))dx by the method of integration by parts, where α takes the values 1,2,3,4,5,…n; β takes values 1,2,3,4,5,…m..
An example of solving integrals for α=1, β=3 is considered; α=2, β=4; α=3, β=1 α=4, β=5.
∫ln(αx+√(β+α^2x^2))dx, ∫ln(x+√(3+x^2))dx, ∫ln(2x+√(4+4x^2))dx, ∫ln( 3x+√(1+9x^2))dx, ∫ln(4x+√(5+16x^2))dx
The solution is in PDF format
An example of solving integrals for α=1, β=3 is considered; α=2, β=4; α=3, β=1 α=4, β=5.
∫ln(αx+√(β+α^2x^2))dx, ∫ln(x+√(3+x^2))dx, ∫ln(2x+√(4+4x^2))dx, ∫ln( 3x+√(1+9x^2))dx, ∫ln(4x+√(5+16x^2))dx
The solution is in PDF format
Related Products
IDZ Ryabushko 1.2 Variant 1
Seller: AlexJester147
IDZ Ryabushko 2.1 Variant 2
Seller: AlexJester147
IDZ Ryabushko 1.2 Variant 2
Seller: AlexJester147
IDZ Ryabushko 4.1 Variant 2
Seller: AlexJester147
Option 3 DHS 1.1
Seller: Chelovek10000
Option 2 DHS 1.1
Seller: Chelovek10000
Option 1 DHS 1.2
Seller: Chelovek10000
IDZ Ryabushko 8.2 Variant 2
Seller: AlexJester147