Solved integral of the form ∫ln(αx^2+β)dx
📂 Mathematics
👤 plati-goods
Product Description
Solution of an indefinite integral of the form ∫ln(αx^2+β)dx by the method of integration by parts, where α takes the values 1,2,3,4,5,…n; β takes the values ±1,±2,±3,±4,±5,…±m..
An example of solving integrals for α=1, β=3 is considered; α=3, β=−4; α=2, β=−5 α=4, β=1.
∫ln(αx^2+β)dx, ∫ln(x^2+3)dx, ∫ln(3x^2−4)dx, ∫ln(2x^2−5)dx, ∫ln(4x^2 +1)dx
The solution is in PDF format
An example of solving integrals for α=1, β=3 is considered; α=3, β=−4; α=2, β=−5 α=4, β=1.
∫ln(αx^2+β)dx, ∫ln(x^2+3)dx, ∫ln(3x^2−4)dx, ∫ln(2x^2−5)dx, ∫ln(4x^2 +1)dx
The solution is in PDF format
Related Products
IDZ Ryabushko 1.2 Variant 1
Seller: AlexJester147
IDZ Ryabushko 2.1 Variant 2
Seller: AlexJester147
IDZ Ryabushko 1.2 Variant 2
Seller: AlexJester147
IDZ Ryabushko 4.1 Variant 2
Seller: AlexJester147
Option 3 DHS 1.1
Seller: Chelovek10000
Option 2 DHS 1.1
Seller: Chelovek10000
Option 1 DHS 1.2
Seller: Chelovek10000
IDZ Ryabushko 8.2 Variant 2
Seller: AlexJester147