Solved integral of the form ∫(x^2+α)sinβxdx
📂 Mathematics
👤 plati-goods
Product Description
Solving an indefinite integral of the form ∫(x^2+α)sinβxdx by the method of integration by parts, where α takes the values ±1,±2,±3,±4,±5,…±n; β takes the values 1,2,3,4,5,…m.
An example of solving integrals for α=−2, β=1, α=1, β=2 is considered; α=−5, β=3; α=3, β=4
∫(x^2+α)sinβxdx, ∫(x^2−2)sinxdx, ∫(x^2+1)sin2xdx, ∫(x^2−5)sin3xdx, ∫(x^2+3)sin4xdx
The solution is in PDF format
An example of solving integrals for α=−2, β=1, α=1, β=2 is considered; α=−5, β=3; α=3, β=4
∫(x^2+α)sinβxdx, ∫(x^2−2)sinxdx, ∫(x^2+1)sin2xdx, ∫(x^2−5)sin3xdx, ∫(x^2+3)sin4xdx
The solution is in PDF format
Related Products
IDZ Ryabushko 1.2 Variant 1
Seller: AlexJester147
IDZ Ryabushko 2.1 Variant 2
Seller: AlexJester147
IDZ Ryabushko 1.2 Variant 2
Seller: AlexJester147
IDZ Ryabushko 4.1 Variant 2
Seller: AlexJester147
Option 3 DHS 1.1
Seller: Chelovek10000
Option 2 DHS 1.1
Seller: Chelovek10000
Option 1 DHS 1.2
Seller: Chelovek10000
IDZ Ryabushko 8.2 Variant 2
Seller: AlexJester147