Solved integral of the form ∫(x^2+α)e^(βx)dx
📂 Mathematics
👤 plati-goods
Product Description
Solution of an indefinite integral of the form ∫(x^2+α)e^(βx)dx by the method of integration by parts, where α takes the values ±1,±2,±3,±4,±5,…±n; β takes the values ±1,±2,±3,±4,±5,…m.
An example of solving integrals for α=2, β=2, α=−3, β=4 is considered; α=3, β=−1; α=−4, β=−2; α=3, β=1;
∫(x^2+α)e^(βx)dx, ∫(x^2+2)e^(2x)dx, ∫(x^2−3)e^(4x)dx, ∫(x^2 +3)e^(−x)dx, ∫(x^2−4)e^(−2x)dx, ∫(x^2+3)e^(x)dx
The solution is in PDF format
An example of solving integrals for α=2, β=2, α=−3, β=4 is considered; α=3, β=−1; α=−4, β=−2; α=3, β=1;
∫(x^2+α)e^(βx)dx, ∫(x^2+2)e^(2x)dx, ∫(x^2−3)e^(4x)dx, ∫(x^2 +3)e^(−x)dx, ∫(x^2−4)e^(−2x)dx, ∫(x^2+3)e^(x)dx
The solution is in PDF format
Related Products
IDZ Ryabushko 1.2 Variant 1
Seller: AlexJester147
IDZ Ryabushko 2.1 Variant 2
Seller: AlexJester147
IDZ Ryabushko 1.2 Variant 2
Seller: AlexJester147
IDZ Ryabushko 4.1 Variant 2
Seller: AlexJester147
Option 3 DHS 1.1
Seller: Chelovek10000
Option 2 DHS 1.1
Seller: Chelovek10000
Option 1 DHS 1.2
Seller: Chelovek10000
IDZ Ryabushko 8.2 Variant 2
Seller: AlexJester147